

Spray Drying Products

SDX® Spray Dry Nozzles

The Delavan Difference

Versatility

13 swirl chamber sizes with orifice discs from 0.4mm (0.016") - 6.4mm (0.252"). The large number of swirl chamber and orifice sizes provide customers with more options and can be paired in a variety of combinations to create the droplet size, flow rate, spray angle and exact product quality.

Customisation

Custom spray characteristics to meet a variety of application needs; such as droplet and particle size, spray angle, flow variation and liquid properties.

- Durability and Wear Resistance Our nozzles are available in materials that will resist chemical attack such as ceramics, sintered carbides and various grades of stainless steel.
- ▶ Technical Expertise

Almost every dryer requires a unique solution depending on feed material, capacity, and operating conditions.

Delavan understands the issues inherent in spray drying and will recommend the right nozzle for the best possible performance.

Delavan Spray Technologies

Continually meeting the challenges of new industries and markets

Delavan Spray Technologies, part of United Technologies
Corporation, is a world leader in the design and manufacture of
high quality spray nozzles and fluid handling systems. Since
the company was founded back in 1935, the Delavan name
has always stood for quality, flexibility and reliability.

High Performance, Rugged Durability

The Delavan SDX® range of spray drying nozzles set the standard by which other nozzles are judged. We were the first to hold a patent on the revolutionary swirl chamber design, with a single inlet, which minimises plugging and maximises particle uniformity. This design has improved dry product quality because the spiral configuration conforms to the natural path of liquid as it progresses toward the orifice.

Delavan is continually evaluating the critical design features of the various models of nozzle that comprise the **SDX**® range. This engineering work, combined with feedback from thousands of users around the world, generates opportunities to improve the performance of the product as well as lowering the cost of ownership and simplifying maintenance. Significant recent enhancements to the **SDX**® range can be found within this updated product brochure.

An Investment in Quality and Performance

The substantial investment that **Delavan** has made in the last few years in state-of-the-art machining centres has borne fruit in the improvements in quality and lead time reduction that have taken place since manufacturing was transferred to the centre of excellence for spray dry products at Widnes, in the UK. Combined with high technology laser marking and premium quality packaging this ensures that all genuine **Delavan SDX®** components reach customers in a timely fashion and in pristine condition.

Delavan remains committed to providing all customers with the reliable delivery of premium quality products, which offer the kind of performance and benefits expected from the nozzle technology leader.

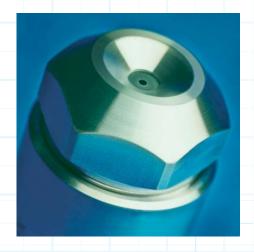
The Critical Factors That Affect Spray Quality

The Atomiser

Delavan recognises that at the 'heart' of any spray dryer is the atomiser, small in size, big in importance. Therefore installing the right atomiser is an essential step to ensuring spray drying success.

The atomiser must fulfil several important functions:

- It must disperse the feed material into small droplets, which should be well distributed within the dryer and mixed thoroughly with the hot gas
- 2. The size of the droplets produced must be compatible with the required product particle size characteristics in order to function correctly
- The droplets produced must not be so large that they are incompletely dried, nor so small that product recovery is difficult – small particles may also overheat and become scorched if this is the case
- 4. The atomiser must also act as a metering device, controlling the flow rate at which the material is fed into the spray dryer


Consequently, the atomiser, though a relatively inexpensive component, is therefore an extremely critical element in the spray drying process.

Centrifugal Pressure Nozzles

The SDX® represents Delavan's range of centrifugal spray drying nozzles. Energy for atomisation is supplied solely by the feed liquid pressure, with pressures up to 700 Bar being used. The SDX® range is of the swirl type configuration using a single inlet swirl chamber and has the capability of atomising liquids having viscosities up to several hundred centipoise. All the SDX® nozzles use a similar design swirl configuration with orifice discs, thereby guaranteeing uniformity of performance across the range.

Two-Fluid Nozzles

In two-fluid nozzles, gas (or steam) supplies most of the energy required to atomise the liquid. Liquid admitted under low pressure may be mixed either internally or externally with the gas. Although energy requirements for this atomiser are generally greater than the spinning disks or pressure nozzles, the two-fluid nozzle can produce very fine atomisation, particularly with viscous materials. It is often used in laboratory and small spray dryers.

Full Technical Support

- Lifetime service and support
 Once Delavan nozzles have been installed in your dryer, the support does not end. You can contact
 Delavan at any time with changes, questions or technical issues
- Computer Analysis

Delavan uses computer analysis to produce information such as droplet size, spray angle, flow rate – all before installing any nozzles into the spray dryer, saving you valuable time and money

Liquid Properties

The properties of the feed stock are directly related to the finished particle size. Therefore density, viscosity, percentage solids, abrasive awareness and any other characteristics all need to be considered.

The liquid properties should be established at the temperature corresponding to the liquid in the nozzle. Feed stocks are often sprayed at elevated temperatures to decrease viscosity, thereby improving atomisation.

The effect of each liquid property on droplet size is usually established by actual test, however **Delavan's** field experience shows that these effects can be closely estimated from the following correction factors:

Effect of Liquid Viscosity

 $D \alpha m^{0.25}$ $D \alpha s^{0.33}$

D = Mean Droplet Diameter (Micrometers)
 m = Absolute Viscosity (Centipoise)
 s = Surface Tension (Dynes/cm)

Spray Quality and Particle Size

Whilst durability is one of the foremost requirements of pressure nozzles, atomisation quality is certainly just as critical. The importance of droplet size is often more critical than in other spray operations. Droplet size affects not only dryer size and operating efficiency, but also the characteristics of the final product. Particle size is critical with regard to bulk density, solubility and customer acceptance. Distinguishing between droplet size and particle size is important, since the two are generally not identical, although the relationship between the two can often be determined, usually by on-site trials. Particle size, or droplet size is usually expressed in terms of a mean or average diameter as well as the range or spread in size.

Droplet Diameters

Delavan uses the Sauter mean diameter, whose ratio of volume to surface area is equal to that of the aggregate spray, to measure the droplet diameter. The range or spread in droplet size requires an understanding of the entire distribution. Typically, a spray drying nozzle will produce droplets as small as 1-2 micron and as large as 400-500 micron. However, the majority will be within a range of 50-200 micron. The narrower the range of droplet size the more suited it is to spray drying, with a 'mono -range' the ultimate goal for most operators.

Spray Angle

The spray angle in spray drying is usually in the 60° to 90° band. It must be noted that the spray angle measured near the orifice may not prevail further away. This is particularly true at high pressures, when the angle becomes actually narrower within a short distance. Therefore it is important to establish the exact manner in which this spray angle is measured.

Flow Variation

SDX® nozzles can also act as metering devices, controlling the distribution of feed into the chamber. Whether a single or multi-nozzle application, the flow rate must be precisely controlled to be compatible with the dryer design. It is important therefore to understand the properties of the feed material.

Wear Resistance

The wear life of the internal parts (consumable parts), depends upon its corrosion and erosion resistant characteristics

- Corrosion occurs when the liquid feed and wear parts are chemically incompatible. Corrosion problems can be avoided if the chemical properties of the feed stock are known and the material of the consumable parts are designed to be compatible.
- Erosion results from the liquid feed with its abrasive solids physically removing the material. Erosion can be combated, but never fully overcome. The use of harder material, or special materials can reduce this problem.

SDX[®] Spray Dry Nozzles

Product Overview

Delavan Spray Technologies has been the leading innovator and supplier of atomising nozzles for the spray dry industry for more than six decades. This tradition started with the original SDX® Nozzle and continues with the latest SDX® family of nozzles. This product line, specifically designed for the spray drying industry, includes five centrifugal pressure nozzles: the Mini SDX®, Compact SDX®, SDX®, SDX® III and SDX® V.

Each of these five products is built on **Delavan's** unique single inlet spiral swirl chamber design and highly polished orifice. This combination swirl chamber and orifice produces a limitless number of combinations to supply virtually any flow rate and spray angle. This means the nozzle can be 'fine tuned' to almost any dryer or application.

Spray Quality and Particle Size

Each SDX® product incorporates a single inlet design which enhances the nozzle's performance by minimizing plugging and maximising particle uniformity. As standard the automated polishing process controls the diameter of each orifice to within +/- 0.001" (0.25mm) and a highly polished surface ensures incomparable spray performance and durability. The key to the SDX® Nozzle's success is its spray quality and uniform particle size, creating a narrow particle size distribution.

The internal design atomizes liquids with viscosities up to several hundred centipoise. The SDX® is well suited to counter flow spray dryers and installations requiring multiple atomizers.

SDX® Nozzle Benefits

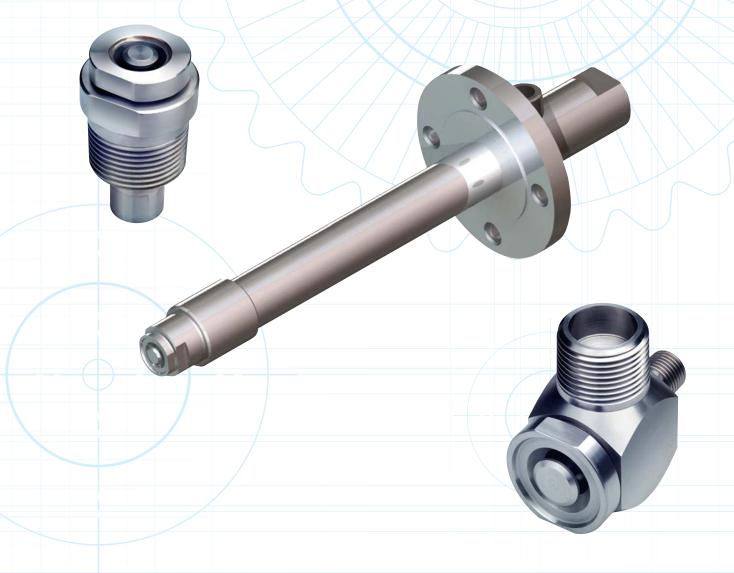
- ► Reduced Pump Pressure
- Lower Dryer Inlet Temperatures
- Less Plugging
- Improved Product Quality
- Increased Throughput
- Longer Wear Life
- ▶ Atomizes Difficult Products
- Close Dimensional Tolerances and Simplicity in Design

Specific benefits will vary with each product and dryer installation

www duesen de

SDX® Spray Dry Nozzles

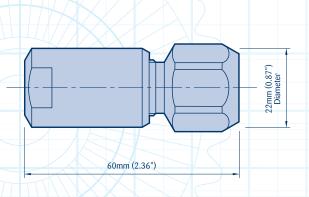
Air Atomising Products


Delavan manufactures a range of air atomising nozzles and lances that can also be used in the spray drying process.

Delavan's Swirl Air and AL Nozzles can be used as the primary atomizer in both production and pilot scale applications. Air atomising nozzles can be used when low pressure liquid and compressed air is used for atomisation rather than high pressure liquid.

For further information please request a copy of our Swirl Air Brochure and AL Literature.

Custom Nozzles and lances are also manufactured to suit individual site requirements. Please contact our office or local distributor for further information.


SDX[®] Spray Dry Nozzles

Mini SDX® Nozzle

The Mini SDX® is a low-flow, easy to assemble nozzle, offers the same performance and technology as our larger SDX® products, but for lower capacity applications.

Hand tighten assembly with a maximum operating pressure of 345 BAR/5000 PSI. Maximum operating temperature to be determined by the O-Ring material.

Mini SDX® Assembly Description and Part Numbers

Description	Part Number	Material
(A) Body	A329320020	Stainless Steel
(B) Orifice Disc	A00902-XXX*	Tungsten Carbide
(C) Swirl Chamber	See Swirl Chamber Chart	
(D) O-Ring	A313520130	Viton
(E) 1/4 NPTF Adaptor	A329310013	Stainless Steel
(E) 3/8 NPTF Adaptor	A329310021	Stainless Steel
Assembly Tool	A363860006	Stainless Steel
Mini SDX® Seal Kit	(24 O-Rings)	
	A491090005	Viton

* Specify orifice size and swirl chamber suffix from capacity chart, on pages 18-19

Please Note: This chart is only a limited illustration of available sizes. Special materials are available on request for particular applications, please contact us for prices and delivery

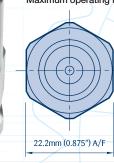
Mini SDX® Swirl Chamber Part Numbers

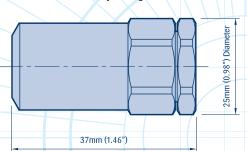
	T		
Ref	Tungsten Carbide	Ceramic	
SW1	A507910014	A329330011	
SW2	A507910022	A329330029	
SW3	A507910030	A329330037	
SW4	A507910048	A329330045	

Assembly Procedure:

- 1. Place Nozzle Body (A) thread side up on a flat surface
- 2. Place the Orifice Disc (B) cone face down into the Nozzle Body (A)
- 3. Hand tighten the Orifice Disc (B) with the Assembly Tool Part No 36386
- 4. Place Adaptor O-Ring (D) onto recess on Adaptor (E)
- 5. Slot the Adaptor (E) inlet thread side down and place the Swirl Chamber (C) swirl side down into the Adaptor (E)
- 6. Place the Nozzle Body (A) into the Swirl Chamber (C) and Adaptor (E) and screw together and hand tighten only
- 7. Finally ensure the complete assembly does not rattle

Orifice Disc (B)


Swirl Chamber (C)



Compact SDX® Nozzle

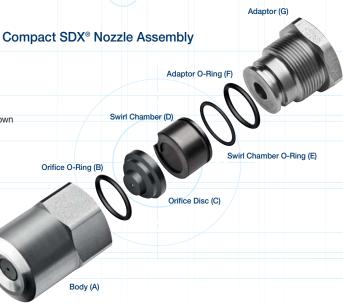
The Compact SDX® is a new and improved nozzle, featuring easy to assemble, longer lasting parts. It mimics the Mini SDX® in size but has a higher flow range with more spray angles.

Hand tighten assembly with a maximum operating pressure of 345 BAR/5000 PSI. Maximum operating temperature to be determined by O-Ring material.

Compact SDX® Assembly Description and Part Numbers

	5	
Description	Part Number	Material
(A) Body	W203010035	Stainless Steel
(B) Orifice O-Ring	A313520148	Viton
	W155100149	Silicone
(C) Orifice Disc	W20303-XXX*	Tungsten Carbide
(D) Swirl Chamber	See Swirl Chamber Chart	/ / /
(E) Swirl Chamber O-Ring	W203070013	Viton
	W203070021	Silicone
(F) Adaptor O-Ring	A313520148	Viton
	W155100149	Silicone
(G) Female Adaptor	W203020034	Stainless Steel
Thread Guard	W203230013	Brass
Compact/Mini Adaptor	W214510031	Stainless Steel
Removal Tool	W203080012	DurAl
Compact SDX® Seal Kit	(12 of each O-Ring)	
	W203050015	Viton
	W203060014	Silicone

^{*} Specify orifice size and swirl chamber suffix from capacity chart, on pages 18-19

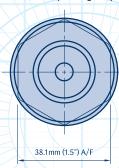

Please Note: This chart is only a limited illustration of available sizes. Special materials are available on request for particular applications, please contact us for prices and delivery.

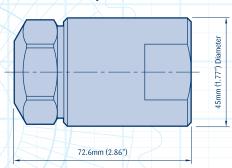
Compact SDX® Swirl Chamber Part Numbers

	Ref	Part Number	Material
	SA	W203040016	Tungsten Carbide
	SB	W203040024	Tungsten Carbide
Ž	SC	W203040032	Tungsten Carbide
	SD	W203040040	Tungsten Carbide

Assembly Procedure:

- 1. Place Nozzle Body (A) thread side up on a flat surface
- 2. Place the Orifice O-Ring (B) cone face down into the Nozzle Body (A)
- 3. Place the Orifice Disc (C) onto the Orifice O-Ring (B) protruding side down
- 4. Secure the Swirl Chamber O-Ring (E) onto the Swirl Chamber (D)
- Place the Swirl Chamber Assembly (D+E) swirl side down onto the Orifice Disc (C) into Nozzle Body (A)
- 6. Secure the Adaptor O-Ring (F) into the recess on Adaptor (G)
- Screw down the Adaptor (G) into the Nozzle Body (A) securing all components in place and hand tighten only





SDX® Nozzle

The SDX® is a classic eight part construction nozzle made from Stainless Steel and would typically be used for high pressure and high temperature applications.

Torque tighten assembly with a maximum operating pressure of 482 BAR/7000 PSI. Maximum operating temperature to be determined by the material of the seals.

SDX® Assembly Description and Part Numbers

Description	Part Number	Material
(A) Body	A297760074	Stainless Steel
(B) Orifice O-Ring	A297720011	Nylon
	A297720037	Aluminium
	A297720060	PTFE
	A297720078	Hard Fibre
	A297720086	Stainless Steel
	A297720045	Copper
(C) Orifice Disc	A00703-XXX*	Tungsten Carbide
(D) Swirl Chamber	See Swirl Chamber Charts	
(E) End Plate	W053660012	Tungsten Carbide
(F) Screw Pin	A297770073	Stainless Steel
(G) Body O-Ring	A297730010	Nylon
	A297730036	Aluminium
	A297730069	PTFE
	A297730077	Hard Fibre
	A297730044	Copper
	A297730085	Stainless Steel
(H) Adaptor	BSPT Thread NPT Thread	
1/4 Adaptor	A297750380 A297750018	Stainless Steel
3/8 Adaptor	A297750398 A297750273	Stainless Steel
1/2 Adaptor	A297750406 A297750315	Stainless Steel
3/4 Adaptor	A297750323 A297750281	Stainless Steel
SDX [®] Seal Kit	(10 of each O-Ring)	
	A299630010	Nylon
	A299630036	Aluminium
	A299630044	Copper
	A299630069	PTFE
	A299630077	Hard Fibre

^{*} Specify orifice size and swirl chamber suffix from capacity chart, on pages 18-19

Please Note: This chart is only a limited illustration of available sizes. Special materials are available on request for particular applications, please contact us for prices and delivery.

SDX® Swirl Chamber/End Plate Part Numbers

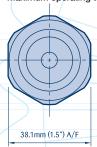
Ref	Swirl Chamber/Endplate Tungsten Carbide	Swirl Chamber Only Tungsten Carbide	HSS
SA	W013800013	A312120015	A297940015
SB	W013800021	A312120023	A297940023
SC	W013800039	A312120031	A297940031
SD	W013800047	A312120049	A297940049
SE	W013800054	A312120056	A297940056
SF	W013800062	A312120064	A297940064
SG	W013800070	A312120072	A297940072
SH	W013800088	A312120080	A297940080
SI	W013800096	A312120098	A297940098
SJ	W013800104	A312120106	A297940106
SK	W013800120	A312120122	A297940122
SL	W013800110	A312120114	A297940114
SM	W013800138	A312120130	A297940130

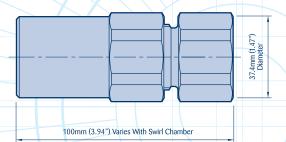
Assembly Procedure:

- 1. Place Nozzle Body (A) thread side up on a flat surface
- 2. Place Orifice O-Ring (B) in the Nozzle Body (A)
- 3. Place Orifice Disc (C) on top of the Orifice O-Ring (B)
- 4. Place Swirl Chamber (D) on top of Orifice Disc (C) either way up
- 5. Insert End Plate (E) over Swirl Chamber (D) bevelled side up 6. Install Screw Pin (F) into Nozzle Body (A), wrench until snug
- 6. Install Screw Pin (F) into Nozzle Body (A), wrench until sni (Torque of 47.5 Newton/Metres or 30-35 Foot Pounds)
- 7. Drop Body O-Ring (G) onto Nozzle Body (A)
- Screw Nozzle Body Assembly onto Adaptor (H), wrench snug (Torque 68 Newton/Metres or 50 Foot Pounds)
- 9. Finally ensure the complete assembly does not rattle

SDX® Nozzle Assembly

Orifice O-Ring (B)




SDX® III Nozzle

The SDX III® is a seven part nozzle, of which the wear parts (orifice and swirl chamber) are interchangeable with the 'Classic' SDX®. It features O-Rings for sealing so can be hand tightened, requiring no tools at all.

Hand tighten assembly with a maximum operating pressure of 345 BAR/5000 PSI. A further derivative capable of up to 700 bar / 10150 psi is available.

Maximum operating temperature to be determined by O-Ring material.

SDX® III Assembly Description and Part Numbers

Description	Part Number		Material
(A) Body	W113000001		Stainless Steel
	A484400013		17-4 PH Stainless
Steel			//X
(B) Orifice O-Ring	W155100164		Silicone
	A313520163		Viton
(C) Orifice Disc	A00703-XXX*		Tungsten Carbide
(D) Swirl Chamber	See Swirl Cham	nber Charts	
(E) End Plate	A383310016		Tungsten Carbide
(F) Adaptor O-Ring	W155100214		Silicone
	A313510321		Viton
(G) Adaptor	BSPT Thread	NPT Thread	
1/4 Female Adaptor	W113011339	A383290015	Stainless Steel
3/8 Female Adaptor	W113012337	A383290028	Stainless Steel
1/2 Female Adaptor	W113013335	A383290036	Stainless Steel
3/4 Female Adaptor	W113014333	A383290044	Stainless Steel
Thread Guard	A504230010		Brass
Multi-Nozzle Adaptor	A95161-3		Stainless Steel
	A95161-4		Stainless Steel
	A95161-5		Stainless Steel
Assembly Tool	W153070005		DurAl
SDX® III Seal Kit	(10 of each O-F	Ring)	
	A487250001		Silicone
	A487250027		Viton

^{*} Specify orifice size and swirl chamber suffix from capacity chart, on pages 18-19

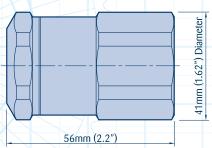
Please Note: This chart is only a limited illustration of available sizes. Special materials are available on request for particular applications, please contact us for prices and delivery.

Assembly Procedure:

- 1. Place Nozzle Body (A) thread side up on a flat surface
- 2. Make sure the Orifice O-Ring (B) is pressed snugly to the Nozzle Body (A)
- 3. Place Orifice O-Ring (B) bevelled side down into the Nozzle Body (A)
- 4. Use a finger to align the orifice into recessed area in the Nozzle Body (A)
- Place Swirl Chamber (D) on top of Orifice Disc (C) either way up the direction does not affect functionality (W0138 will go one way only)
- 6. If you require an End Plate (E) place it circular side down over Swirl Chamber (D) with square side of the end plate on top
- 7. Make sure Adaptor O-Ring (F) is on Adaptor (G)
- 8. Screw Adaptor (G) onto Nozzle Body (A) and hand tighten only
- 9. Finally ensure the complete assembly does not rattle

SDX® III Swirl Chamber/End Plate Part Numbers

	Ref	Swirl Chamber/Endplate Tungsten Carbide	Swirl Chamber Only Tungsten Carbide	HSS
_	SA	W013800013	A312120015	A297940015
	SB	W013800021	A312120023	A297940023
2	SC	W013800039	A312120031	A297940031
	SD	W013800047	A312120049	A297940049
>	SE	W013800054	A312120056	A297940056
	SF	W013800062	A312120064	A297940064
	SG	W013800070	A312120072	A297940072
	SH	W013800088	A312120080	A297940080
	SI /	W013800096	A312120098	A297940098
	SJ	W013800104	A312120106	A297940106
	SK	W013800120	A312120122	A297940122
	SL	N/A	N/A	A297940114
	SM	W013800138	A312120130	A297940130


SDX® V Nozzle

The SDX® V features an eight part construction and is the world's most user friendly spray drying nozzle, requiring only hand tight engagement of the nozzle body into the adaptor throughout the pressure range. The SDX® V also features an improved wear life / performance and effortless maintenance for the lowest total cost of ownership.

Hand tighten assembly with a maximum operating pressure of 345 BAR/5000 PSI. A further derivative capable of operation of 700 BAR/10150 PSI. Maximum operating temperature to be determined by O-Ring material.

Part number W196440025 for removal of SDX® V Swirl Chambers and Orifice Discs.

SDX® V Assembly Description and Part Numbers

Description	Part Number		Material
(A) Body	W194990013		Stainless Steel
	W194990708		17-4 PH Stainless
(B) Orifice O-Ring	W155100164		Silicone
	A313520163		Viton
(C) Orifice Disc	W19581-XXX*		Tungsten Carbide
(D) Swirl Chamber	See Swirl Cham	ber Chart	
(E) Retainer O-Ring	W155100180		Silicone
	A313520189		Viton
(F) Standard Retainer	W195490013		Stainless Steel
Cross-Milled Retainer	W198300003		Stainless Steel
Crown Retainer	See Swirl Cham	ber Chart	
End Plate	W053660012		Tungsten Carbide
(G) Body O-Ring	W155100222		Silicone
	A313520221		Viton
(H) Adaptor	BSPT Thread	NPT Thread	
1/4 Adaptor	W195000010	W196350018	Stainless Steel
3/8 Adaptor	W195000028	W196350026	Stainless Steel
1/2 Adaptor	W195000036	W196350034	Stainless Steel
3/4 Adaptor	W195000044	W196350042	Stainless Steel
Removal Tool	W196440025		DurAl
SDX® Adaptor	W19636		Stainless Steel
SDX® II/III Adaptor	W19637		Stainless Steel
SDX® V Seal Kit	(10 of each O-F	Ring)	
	W197690016		Viton
	W197690024		Silicone

^{*} Specify orifice size and swirl chamber suffix from capacity chart, on pages 18-19

Please Note: This chart is only a limited illustration of available sizes. Special materials are available on request for particular applications, please contact us for prices and delivery.

The design of the SDX® V is protected by Patents/Patent Applications including: EP 1474243; EP 1832347; US 2007235564; CA 2472771; AU 2002234817; NZ 534493; MX PA04007486.

SDX® V Swirl Chamber Part Numbers

Ref	Standard*	Flat Back*	Open*	Crown Retainer*
SA	W194720014	W198290014	W209710018	W211240012
SB	W194720022	W198290022	W209710026	W211240020
SC	W194720030	W198290030	W209710034	W211240038
SD	W194720048	W198290048	W209710042	W211240046
SE	W194720055	W198290055	W209710059	W211240053
SF	W194720063	W198290063	W209710067	W211240061
SG	W194720071	W198290071	W209710075	W211240079
SH	W194720089	W198290089	W209710083	W211240087
SI	W194720097	W198290097	W209710091	W211240095
SJ	W194720105	W198290105	W209710109	W211240103

^{*}Standard Swirl Chamber uses Standard Retainer W195490013 or Crown Retainer W209700001 *Flat Back Swirl Chamber uses Cross Milled Retainer W198300003 or Crown Retainer W209700001

SDX® V Interface Adaptors

Part Number	Ref	Size
SDX® to SDX® V Interface Adaptor		
W19636	- 1	1/4" NPT
W19636	- 2	3/8" NPT
W19636	- 3	1/2" NPT
W19636	- 4	3/4" NPT
SDX® II & III to SDX® V Interface Adaptor		
W19637	- 1	1/4" NPT
W19637	- 2	3/8" NPT
W19637	- 3	1/2" NPT
W19637	- 4	3/4" NPT

Delavan can offer a range of interface adaptors for the SDX® V nozzle. These can be used when converting from previous SDX® nozzles over to the new SDX® V nozzle. The interface adaptors are there to ensure that the same overall nozzle length of nozzle assembly is achieved.

^{*}Open Swirl Chamber uses Crown Retainer (Various Sizes)
*Crown Retainer Part Numbers to be used with Open Swirl Chamber

SDX® V Swirl Chambers

Delavan has introduced an alternative design of Swirl Chamber especially for the SDX® V nozzle. The end plate is no longer integrated but is supplied as a separate component.

This new option addresses occasions where increased wear on the bottom of the standard chamber occurs, caused by cavitation or abrasive particles. In certain circumstances, the bottom of the Swirl Chamber wears out before the walls, or the inlet throat. With the new design, the separate end plate can be replaced and the 'open' Swirl Chamber can be reused, this significantly reduces the cost of ownership. There is also the option to use end plates with improved wear characteristics or chemical resistance.

The new Swirl Chamber required the introduction of a revised retainer that would locate the end plate correctly. The new retainer is designed to centralise the end plate onto the chamber and lock all components into place. It also has a lower pressure drop and improved blockage resistance compared to the existing retainers and Part No. W209700001 can be used with all current SDX® V Swirl Chamber derivatives.

The original Swirl Chamber design (Option 1) is the standard for SDX® V nozzles. The Flat Back version (Option 2) can be used where materials with a high solids percentage are to be atomised. The Open Swirl Chamber (option 3) is ideal for highly abrasive applications since the end plate is separate and can be replaced completely independently of the Swirl Chamber.

Assembly Procedure:

- 1. Place Nozzle Body (A) thread side up on a flat surface
- 2. Insert the Orifice O-Ring (B) into the Nozzle Body (A)
- 3. Insert the Orifice Disc (C) in to the Nozzle Body (A) with the 'orifice nose' (the small diameter section of the orifice) inserted first so that the tapered inlet section can be seen.
- 4. Place Swirl Chamber (D) on top of the Orifice Disc (C) with the 'swirl profile' located against the back face of the Orifice Disc (C)
- 5. Ensure that the Retainer O-Ring (E) is fitted onto the Retaining Disc (F)
- 6. Push the Retaining Disc (F) into the Nozzle Body (A) until unit is pressed flat against the back face of the Swirl Chamber (D) and Nozzle Body (A)
- 7. Place the Body O-Ring (G) into the body o-ring groove positioned above the threads on the outside of the Nozzle Body (A)
- 8. Pick up assembled unit and screw into Female Adaptor (H), hand tighten

SDX® V Nozzle Benefits

With the introduction of the original SDX range of spray drying nozzles, Delavan established itself as the technology leader in this specialist field. Over the years several attempts have been made to improve upon the principals embodied in the unique single vortex swirl chamber but, thus far, no better design has been introduced into the market.

Each of the five nozzles in the SDX range is built on Delavan's unique single inlet swirl chamber design and highly polished orifice disc. This combination of swirl chamber and orifice produces a wider range of flow rates and spray angles. This means the nozzle can be 'fine tuned' to almost any dryer or application.

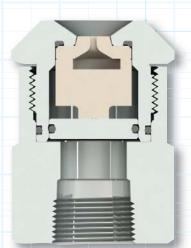
Delavan SDX! Where we lead, others follow!

- Delavan originally developed the single inlet Swirl Chamber with the SDX Nozzle
- Delavan originally developed the hand tighten assembly with the SDX III
- Delavan originally developed the retaining feature with the SDX and then simplified with the SDX V
- Delavan originally developed the use of sealing surfaces into carbide components with the SDX Compact

The list goes on......

Nozzle Characteristics

- Wear parts positively retained, eliminating the possibility of component breakage and minimising the risk for misalignment.
- Patented orifice design with a proven increase in wear life over standard flat orifice discs
- Hand tight design for ease of assembly and reduced maintenance
- Metal to metal secondary sealing of the nozzle body and adaptor
- Swirl Chamber and retainer variations to suit customer specific requirements
- DODE OF OF ORD Female threaded adaptor minimising the risk of thread damage during routine lance change outs
- Widest range of Orifice Disc and Swirl Chambers on the market
- Multiple grades of carbide to maximise wear life
- Simplified and reduced nozzle length
- Nozzle bodies and adaptors available in a variety of materials


Spray Characteristics

The SDX range of nozzles with the "original" single inlet swirl chamber produces a hollow cone spray pattern with a uniformed droplet distribution

With 10 sizes of swirl chamber and over 220 orifice sizes the ability to fine tune the flow rate and spray angle is almost limitless

Flow rates range from 6 – 1400 gph @ 1000 psi (69 bar)

Proven pressure rating to 10,000psi (690 bar) without the need for expensive back up rings

SDX® Accessories

Cone Faced Body

These are designed to prevent build up on the front face of the nozzle body. Available in angles to suit individual applications.

Cone Faced Body Part Numbers

Nozzle	70°	80°	90°
SDX®	A203190010	A203190028	A203190036
SDX® III	W118820015	W118820023	W118820031
SDX® V	W196000019	W196000027	W196000035

Butt Weld Adaptor

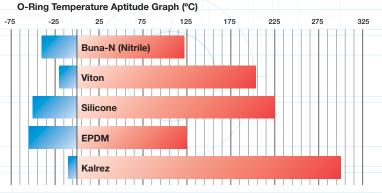
We offer the butt weld adaptor in a range of standard pipe sizes, configurations and lengths, with custom designs available upon request. Ensure that adaptor welds are carried out to the appropriate safety approvals and standards.

Check Valves

There are several versions of non drip check valves available for the SDX range of nozzles, please contact the factory for further information.

Check Valve Seat

Body O-Ring



Seal Kits

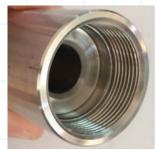
We supply seal kits for the SDX Nozzles in various materials. Each kit comprises of 10 of each seal.

Delavan recommends that seals are changed after each run.

The O-Ring, otherwise known as toroidal seal, is an exceptionally versatile sealing device. Delavan supplied O-Rings are of the highest quality currently available on the market, and are specified specifically for our nozzle components. This data sheet offers Delavan O-Ring consumers a range of performance and compatibility data from our standard supply materials. We recognise that not all applications are suitable for these standard readily available materials and offer alternatives to suit individual applications on request. We are also able to offer FDA (Food and Drug Association) approved materials accompanied by a certificate.

Training

The Delavan SDX range of nozzles are fully supported in the field through organised training sessions and backed up with decades of technical experience in spray drying.


Delavan offers a maintenance and training program for operators and OEM's to ensure that you have all of the tools necessary for trouble free operation of your spray nozzles.

Some of the topics covered are:

- Maintenance
- Assembly / disassembly
- Inspection of carbide components, the effects of wear and what to look out for
- Good practice guide

Maintenance Considerations

SDX V offers built in thread protection to eliminate potential damage caused during maintenance

The Delavan SDX nozzle range has been specifically designed for high pressure applications with the SDX III configuration being in service throughout the world for over 40 years. Each component throughout the SDX range is precision machined to tested and proven dimensions with close tolerances to suit the exacting requirements demanded by the process.

In order to ensure that the nozzles continue to operate effectively it is vital that each component is handled carefully, ensuring that there is no damage to the components. This is particularly important with the sealing surface areas and the threads. Any slight damage to a sealing face or surface, or to a thread profile, can potentially cause an issue. If there is any doubt about the condition of a component then Delavan would suggest that the item is replaced.

The Delavan SDX range of nozzles has been operating successfully and safely throughout the world for over 60 years. In developing the SDX range independent high pressure cycling and proof pressure testing was commissioned in order to ensure that we can support the ever increasing demands of our customers, complying with ASME B31.3 standard.

Contact our Helpline or your local distributor for further information
Tel: +44 (0)151 424 6821 or inside USA Toll Free: 1-800 Delavan
E-mail: sales@delavan.co.uk www.delavan.co.uk

Damage to threads on SDX III Nozzle

Particular attention needs to be paid to sealing areas ensuring that no damage is present that can compromise the integrity of the O-Rings. Delavan strongly recommends the replacement of these O-rings each time the nozzle is assembled.

Ordering

Ordering guides are available to suit specific requirements, contact Delavan for more information

Understanding the "custom" aspect of each application is of critical importance to spray drying.

Almost every dryer presents a unique situation and that is why Delavan uses computer analysis programs to produce information on spray angles and flow rates before installing any nozzles into the spray dryer, saving valuable time and money. Contact our Helpline or your local distributor for further information.

Orifice sizes ranging from 0.016" – 0.250" in increments of 0.001" Swirl Chambers ranging from SA (0.76mm) to SM (16mm)

The Orifice and Swirl Chamber sizes below show an example of some possible combinations. with over 220 Orifice sizes and 10 Swirl Chamber variants allows us to find a combination to suit your droplet size, flow rate and spray angle requirements

ırt

Swirl (Metering S Chamber Type		Chamber/Orif	ice) Orifice	Spray Angle (1000 PSIG)	Flo	ow Rate i	n Litres/H	IR at BAI	₹G	FI	low Rate	in USGP	H at PSI	G
Mini SDX®	Compact SDX®	SDX® SDX® III	SDX® V	Orifice Dia (in)	Measured with Water	69	138	207	276	345	1000	2000	3000	4000	5000
SW4	_	_	_	0.016	70°-75°	21	30	37	42	47	6	8	10	11	12
SW4				0.018	70°-75°	24	34	42	48	54	6	9	11	13	14
SW4	_	_	_	0.020	70°-75°	26	36	45	51	57	7	10	12	14	15
SW4		#1	1	0.022	70°-75°	28	40	49	57	64	8	11	13	15	17
SW4	_	_	_	0.024	70°-75°	33	46	56	65	73	9	12	15	17	19
	SAC	SA	SAV	0.025	68°	51	72	89	102	114	13	19	23	27	30
SW1	_	_	_	0.027	70°-75°	55	78	95	110	123	14	20	25	29	32
_	SAC	SA	SAV	0.028	71°	57	80	98	114	127	15	21	26	30	33
SW1		_		0.030	70°-75°	62	88	108	125	140	16	23	29	33	37
_	SAC	SA	SAV	0.031	74°	62	88	108	125	140	16	23	29	33	37
SW1	_	_	_	0.033	70°-75°	66	93	114	132	147	17	25	30	35	39
	SAC	SA	SAV	0.034	77°	68	96	118	136	152	18	25	31	36	40
SW1	_	_	_	0.036	70°-75°	71	101	123	142	159	19	27	33	38	42
_	SAC	SA	SAV	0.037	79°	76	107	131	151	169	20	28	35	40	45
SW2	_	_	_	0.038	70°-75°	100	142	177	201	224	26	37	47	53	59
	SBC	SB	SBV	0.040	76°	95	134	164	189	212	25	35	43	50	56
SW2	_	_	_	0.042	70°-75°	114	160	197	114	254	30	42	52	30	67
	SBC	SB	SBV	0.043	78°	104	147	180	208	233	27	39	48	55	61
SW2	_	_	_	0.044	70°-75°	119	168	207	238	266	31	44	55	63	70
	SBC	SB	SBV	0.046	80°	114	160	197	227	254	30	42	52	60	67
SW2	_	_	_	0.048	70°-75°	132	187	228	265	296	35	49	60	70	78
_	SBC	SB	SBV	0.049	81°	121	171	210	242	271	32	45	55	64	72
SW2	_		_	0.050	70°-75°	140	198	243	280	313	37	52	64	74	83
	SBC	SB	SBV	0.052	82°	129	182	223	257	288	34	48.1	59	68	76
SW3	_		_	0.054	70°-75°	191	270	331	382	389	50	71	87	101	103
_	SCC	SC	SCV	0.055	78°	170	241	295	341	382	45	64	78	90	101
SW3	_	_	_	0.056	70°-75°	202	286	351	405	453	53	76	93	107	120
_	SCC	SC	SCV	0.058	79°	182	257	314	363	405	48	68	83	96	107
SW3	_	_	_	0.060	70°-75°	219	310	380	439	491	58	82	100	116	130
	SCC	SC	SCV	0.061	80°	193	273	334	386	431	51	72	88	102	114
SW3	_	_	_	0.062	70°-75°	231	327	400	462	516	61	86	106	122	136
_	SCC	SC	SCV	0.064	81°	202	286	351	405	454	53	76	93	107	120
_	SCC	SC	SCV	0.067	82°	212	300	367	424	473	56	79	97	112	125
_	SCC	SC	SCV	0.070	83°	225	318	390	450	503	59	84	103	119	133
_	SDC	SD	SDV	0.073	78°	291	413	503	583	651	77	109	133	154	172
_	SDC	SD	SDV	0.076	79°	310	439	538	621	693	82	116	142	164	183
_	SDC	SD	SDV	0.079	80°	325	462	564	651	727	86	122	149	172	192
	SDC	SD	SDV	0.082	81°	334	477	583	674	753	89	126	154	178	199
_	SDC	SD	SDV	0.085	82°	348	492	602	696	780	92	130	159	184	206
	SDC	SD	SDV	0.088	83°	364	515	628	727	814	96	136	166	192	215
_	_	SE	SEV	0.091	78°	469	662	814	939	1048	124	175	215	248	277
		SE	SEV	0.094	79°	484	685	840	969	1082	128	181	222	256	286
_	_	SE	SEV	0.097	80°	500	708	867	999	1117	132	187	229	264	295
		SE	SEV	0.100	80°	515	727	893	1029	1151	136	192	236	272	304
_	_	SE	SEV	0.103	81°	530	749	920	1060	1185	140	198	243	280	313
-	-	SF	SFV	0.106	76°	723	1022	1253	1446	1616	191	270	331	382	427

SDX® Nozzles Range Cap	bacity Chart
------------------------	--------------

Swirl (Metering S Chamber Type		Chamber/Or	ifice) Orifice	Spray Angle (1000 PSIG)	Flo	ow Rate i	n Litres/H	IR at BAI	₹G	F	low Rate	in USGF	PH at PSI	G
Mini SDX®	Compact SDX®	SDX® SDX® III	SDX® V	Orifice Dia (in)	Measured with Water	69	138	207	276	345	1000	2000	3000	4000	5000
_	_	SF	SFV	0.109	76°	749	1060	1298	1499	1677	198	280	343	396	443
_	T +	SF	SFV	0.112	77°	769	1086	1332	1537	1718	203	287	352	406	454
_	_	SF	SFV	0.115	77°	787	1113	1363	1575	1760	208	294	360	416	465
_		SF	SFV	0.118	78°	814	1151	1408	1628	1821	215	304	372	430	481
_	_	SG	SGV	0.121	73°	1003	1419	1737	2006	2244	265	375	459	530	593
_	_	SG	SGV	0.124	73°	1026	1450	1775	2051	2294	271	383	469	542	606
_	_	SG	SGV	0.127	74°	1052	1487	1824	2104	2354	278	393	482	556	622
_		SG	SGV	0.130	75°	1079	1525	1870	2157	2411	285	403	494	570	637
_	_	SG	SGV	0.133	75°	1105	1563	1915	2210	2472	292	413	506	584	653
		SH	SHV	0.136	70°	1567	2214	2714	3134	3505	414	585	717	828	926
_	_	SH	SHV	0.14	71°	1628	2301	2820	3255	3641	430	608	745	860	962
_	_	SH	SHV	0.145	72°	1703	2407	2948	3406	3808	450	636	779	900	1006
_	_	SH	SHV	0.15	73°	1760	2490	3047	3520	3936	465	658	805	930	1040
_		SH	SHV	0.155	74°	1817	2570	3145	3634	4061	480	679	831	960	1073
_	_	SI	SIV	0.16	70°	2044	2892	3539	4088	4568	540	764	935	1080	1207
_		SI	SIV	0.165	71°	2195	3104	3804	4391	4910	580	820	1005	1160	1297
_	_	SI	SIV	0.17	72°	2347	3319	4065	4693	5246	620	877	1074	1240	1386
_		SI	SIV	0.175	73°	2460	3478	4262	4920	5500	650	919	1126	1300	1453
_	_	SI	SIV	0.18	74°	2555	3615	4425	5110	5712	675	955	1169	1350	1509
_		SI	SIV	0.185	75°	2649	3747	4587	5299	5923	700	990	1212	1400	1565
_	_	SJ	SJV	0.19	71°	3293	4656	5704	6586	7362	870	1230	1507	1740	1945
	1 4	SJ	SJV	0.195	72°	3369	4765	5836	6737	7532	890	1259	1542	1780	1990
_	_	SJ	SJV	0.20	73°	3463	4898	5999	6927	7744	915	1294	1585	1830	2046
		SJ	SJV	0.205	74°	3634	5136	6294	7267	8126	960	1357	1663	1920	2147
_	_	SJ	SJV	0.21	75°	3785	5352	6556	7570	8463	1000	1414	1732	2000	2236

All spray angles are based on water at a pressure of 1000 psi (69 bar). The MINI SDX® has a nominal spray angle of 70°-75° due to it's unique cone faced orifice.

Note: The **Delavan SDX®** family of nozzles are protected by Patent.

The design of the SDX® V is protected by Patents/Patent Applications including: EP 1474243; EP 1832347; US 2007235564; CA 2472771; AU 2002234817; NZ 534493; MX PA04007486.

SDX®	Carbide	Reference	Guide

Delavan Reference	Carbide Description	Abrasion	SRS Star Rating Corrosion	Erosion
Standard Grade	General Purpose Tungsten Carbide Used in all of Delavan's SDX® products and suitable for most applications	***	***	***
Standard Plus Grade	General Purpose Tungsten Carbide Improved resistance for use with High Pressure applications	***	***	****
Premium Grade	Speciality Tungsten Carbide Best suited for Chemical and Abrasion Resistance	****	***	****
Superior Grade	Speciality Tungsten Carbide Best suited for pure Chemical Resistance with Caustic or Acid materials	**	****	***

Delavan's Star Rating System (SRS) outlines three primary properties of wear on our Carbide Products; Abrasion, Corrosion and Erosion. Scale = Lowest Rating (★) to Highest Rating (★★★★)

The SDX® family of products comes with carbide internal components made from our Standard Grade of Carbide which is noted by our part numbers. Please contact Delavan for questions on our complete line of material selections.

Caution: These ratings are subject to each application and should be used as a general guide.

We Don't Just Supply the Nozzles...

Delavan's extensive experience goes beyond just the nozzle with a full range of engineered support for spray lances. Delavan offers a variety of production services to best meet your needs. For new systems, we will handle each stage of development from preliminary design to servicing the product. Delavan can also enhance current designs or simply manufacture products from existing designs. We can provide cooled or heated lances, support special mounting flanges, by-pass or purge systems to meet every industry standard. Whether it is FDA or other coded installments e.g. DIN, JIS or ANSI Delavan has the ability to supply. Contact the factory for more information...

Standard Designs are available for our SDX® and SwirlAir® products in every Spray Dry application, whether it's Food, Chemical, or Pharmaceutical. Flanged Port or Wall Mounted Fittings prevents splash-out during cleaning. Sanitary Connections mounted to the vessel with automated Clean-In-Place valving provides a simple and reliable process for stringent hygienic operations.

Extended Lances with Spray nozzles are available for single-wall, double-wall and insulated vessels. With years of proven designs, **Delavan** can support a large range of extended spray lances with multiple materials of construction, with extensive testing capacities.

Telephone: +49 (0)7022 948 735 Fax: +49 (0)7022 948 636 e-mail: anfrage@www.duesen.de

web: www.duesen.de

An ISO 9001:2000 Registered Company

